# Rural Attractivness back-end service
After the update of source data, refresh the service cache
GET https://publish.lesprojekt.cz/nodejs/refresh
List of all the datasets
GET https://publish.lesprojekt.cz/nodejs/datasets
Attractivity metadata information
GET https://publish.lesprojekt.cz/nodejs/ontology
Attractivity data for the region with ID equal to the 'nuts' parameter
GET https://publish.lesprojekt.cz/nodejs/scores/{nuts}/
Attractivity data for all the regions in source CSV data
GET https://publish.lesprojekt.cz/nodejs/scores
Computes and returns attractivity data for all the NUTS regions based on the incomming datasets and factor weights
POST https://publish.lesprojekt.cz/nodejs/scores
Computes and returns clusters based on attractivity data for all the NUTS regions and based on the incoming datasets and factor weights
POST https://publish.lesprojekt.cz/nodejs/clusters
## Start the system service
sudo systemctl start fz-node-rural_attractiveness
## Install
Install R-project >= 3.6
(On Windows: Add R.exe, Rterm.exe and Rscript.exe to PATH)
`Rterm`
`install.packages("needs")`
`install.packages("jsonlite")`
`install.packages("cluster")`
`q()`
Install NodeJS + npm
`npm i`
`npm start`
# About the attractiveness calculation
For each region and each factor, the index of attractiveness is _idxf = ∑ dsi / Nds_ , where _dsi_ is a normalized value for dataset _i_ and _Nds is a number of datasets in the factor.
For each region the aggregated index of attractiveness is then _idxa = (∑ (∑ dsi * wf)) / (∑ Nds * wf)_, where _wf_ is a weight of the factor.