Back-end service providing rural attractivnes data and analysis tools.

jmacura a8e1d325ed Fix invalid individual in ontology 3 gadi atpakaļ
data a8e1d325ed Fix invalid individual in ontology 3 gadi atpakaļ
r fe777cccff Fix manipulating clustering input 4 gadi atpakaļ
static f13dd425ca Fix Flanders pilot definition 5 gadi atpakaļ
views d0177a04bc Fix georeport response 3 gadi atpakaļ
.babelrc 4c6c0a898f Add nodemon 5 gadi atpakaļ
.gitignore c9dc424265 Ignore dist/ folder 3 gadi atpakaļ
README.md 6c00c98ccb Fix typo 3 gadi atpakaļ
helpers.js fe65b64acd Expose version as yy.mm.dd in the public API 3 gadi atpakaļ
index.js d0177a04bc Fix georeport response 3 gadi atpakaļ
nuts-data.js 827d596564 Improve datasets filter for georeports 3 gadi atpakaļ
package-lock.json 7b7659e947 Upgrade package-lock to v2 3 gadi atpakaļ
package.json f084986d0a Add collaborators 3 gadi atpakaļ
test.html c6b02b9edd Modify /clusters service to manipulate CSV data 5 gadi atpakaļ
version.js fe65b64acd Expose version as yy.mm.dd in the public API 3 gadi atpakaļ

README.md

Rural Attractivness back-end service

After the update of source data, refresh the service cache

GET https://publish.lesprojekt.cz/nodejs/refresh

List of all the datasets

GET https://publish.lesprojekt.cz/nodejs/datasets

Attractivity metadata information

GET https://publish.lesprojekt.cz/nodejs/ontology

Attractivity data for the region with ID equal to the 'nuts' parameter

GET https://publish.lesprojekt.cz/nodejs/scores/{nuts}/

Attractivity data for all the regions in source CSV data

GET https://publish.lesprojekt.cz/nodejs/scores

Computes and returns attractivity data for all the NUTS regions based on the incomming datasets and factor weights

POST https://publish.lesprojekt.cz/nodejs/scores

Computes and returns clusters based on attractivity data for all the NUTS regions and based on the incoming datasets and factor weights

POST https://publish.lesprojekt.cz/nodejs/clusters

Start the system service

sudo systemctl start fz-node-rural_attractiveness

Install

Install R-project >= 3.6

(On Windows: Add R.exe, Rterm.exe and Rscript.exe to PATH)

Rterm install.packages("needs") install.packages("jsonlite") install.packages("cluster") q()

Install NodeJS + npm

npm i npm start

About the attractiveness calculation

For each region and each factor, the index of attractiveness is idxf = ∑ dsi / Nds , where dsi is a normalized value for dataset i and Nds is a number of datasets in the factor.

For each region the aggregated index of attractiveness is then idxa = (∑ (∑ dsi * wf)) / (∑ Nds * wf), where wf is a weight of the factor.