Back-end service providing rural attractivnes data and analysis tools.
|
|
il y a 3 ans | |
|---|---|---|
| data | il y a 3 ans | |
| r | il y a 4 ans | |
| static | il y a 5 ans | |
| views | il y a 3 ans | |
| .babelrc | il y a 5 ans | |
| .gitignore | il y a 3 ans | |
| README.md | il y a 3 ans | |
| helpers.js | il y a 3 ans | |
| index.js | il y a 3 ans | |
| nuts-data.js | il y a 3 ans | |
| package-lock.json | il y a 3 ans | |
| package.json | il y a 3 ans | |
| test.html | il y a 5 ans | |
| version.js | il y a 3 ans |
After the update of source data, refresh the service cache
GET https://publish.lesprojekt.cz/nodejs/refresh
List of all the datasets
GET https://publish.lesprojekt.cz/nodejs/datasets
Attractivity metadata information
GET https://publish.lesprojekt.cz/nodejs/ontology
Attractivity data for the region with ID equal to the 'nuts' parameter
GET https://publish.lesprojekt.cz/nodejs/scores/{nuts}/
Attractivity data for all the regions in source CSV data
GET https://publish.lesprojekt.cz/nodejs/scores
Computes and returns attractivity data for all the NUTS regions based on the incomming datasets and factor weights
POST https://publish.lesprojekt.cz/nodejs/scores
Computes and returns clusters based on attractivity data for all the NUTS regions and based on the incoming datasets and factor weights
POST https://publish.lesprojekt.cz/nodejs/clusters
sudo systemctl start fz-node-rural_attractiveness
Install R-project >= 3.6
(On Windows: Add R.exe, Rterm.exe and Rscript.exe to PATH)
Rterm
install.packages("needs")
install.packages("jsonlite")
install.packages("cluster")
q()
Install NodeJS + npm
npm i
npm start
For each region and each factor, the index of attractiveness is idxf = ∑ dsi / Nds , where dsi is a normalized value for dataset i and Nds is a number of datasets in the factor.
For each region the aggregated index of attractiveness is then idxa = (∑ (∑ dsi * wf)) / (∑ Nds * wf), where wf is a weight of the factor.