Back-end service providing rural attractivnes data and analysis tools.

jmacura 4a810c1152 Fix runR request safety & update API version il y a 3 ans
data a8e1d325ed Fix invalid individual in ontology il y a 3 ans
r fe777cccff Fix manipulating clustering input il y a 4 ans
static f13dd425ca Fix Flanders pilot definition il y a 5 ans
views d0177a04bc Fix georeport response il y a 3 ans
.babelrc 4c6c0a898f Add nodemon il y a 5 ans
.gitignore c9dc424265 Ignore dist/ folder il y a 3 ans
README.md 6c00c98ccb Fix typo il y a 3 ans
helpers.js fe65b64acd Expose version as yy.mm.dd in the public API il y a 3 ans
index.js 4a810c1152 Fix runR request safety & update API version il y a 3 ans
nuts-data.js 827d596564 Improve datasets filter for georeports il y a 3 ans
package-lock.json 7b7659e947 Upgrade package-lock to v2 il y a 3 ans
package.json f084986d0a Add collaborators il y a 3 ans
test.html c6b02b9edd Modify /clusters service to manipulate CSV data il y a 5 ans
version.js 4a810c1152 Fix runR request safety & update API version il y a 3 ans

README.md

Rural Attractivness back-end service

After the update of source data, refresh the service cache

GET https://publish.lesprojekt.cz/nodejs/refresh

List of all the datasets

GET https://publish.lesprojekt.cz/nodejs/datasets

Attractivity metadata information

GET https://publish.lesprojekt.cz/nodejs/ontology

Attractivity data for the region with ID equal to the 'nuts' parameter

GET https://publish.lesprojekt.cz/nodejs/scores/{nuts}/

Attractivity data for all the regions in source CSV data

GET https://publish.lesprojekt.cz/nodejs/scores

Computes and returns attractivity data for all the NUTS regions based on the incomming datasets and factor weights

POST https://publish.lesprojekt.cz/nodejs/scores

Computes and returns clusters based on attractivity data for all the NUTS regions and based on the incoming datasets and factor weights

POST https://publish.lesprojekt.cz/nodejs/clusters

Start the system service

sudo systemctl start fz-node-rural_attractiveness

Install

Install R-project >= 3.6

(On Windows: Add R.exe, Rterm.exe and Rscript.exe to PATH)

Rterm install.packages("needs") install.packages("jsonlite") install.packages("cluster") q()

Install NodeJS + npm

npm i npm start

About the attractiveness calculation

For each region and each factor, the index of attractiveness is idxf = ∑ dsi / Nds , where dsi is a normalized value for dataset i and Nds is a number of datasets in the factor.

For each region the aggregated index of attractiveness is then idxa = (∑ (∑ dsi * wf)) / (∑ Nds * wf), where wf is a weight of the factor.