|
|
@@ -5,6 +5,7 @@ import {HsDialogContainerService} from 'hslayers-ng/components/layout/dialogs/di
|
|
|
import {HsUtilsService} from 'hslayers-ng/components/utils/utils.service';
|
|
|
|
|
|
// import attractivity from '../Attractivity.json';
|
|
|
+import clusteringMethods from '../data/clustering_methods.json';
|
|
|
import {AdjusterEventService} from './adjuster-event.service';
|
|
|
import {AdjusterLoaderComponent} from './adjuster-loader.component';
|
|
|
import {nuts} from '../nuts';
|
|
|
@@ -17,83 +18,11 @@ export class AdjusterService {
|
|
|
clusters = [];
|
|
|
numberOfClusters = 12;
|
|
|
method: string;
|
|
|
- methods = [
|
|
|
- {
|
|
|
- codename: 'km25.cluster',
|
|
|
- name: 'k-means (25 random sets, Hartigan-Wong method)',
|
|
|
- type: 'non-hierarchical',
|
|
|
- },
|
|
|
- {
|
|
|
- codename: 'km50hw.cluster',
|
|
|
- name: 'k-means (50 random sets, Hartigan-Wong method)',
|
|
|
- type: 'non-hierarchical',
|
|
|
- },
|
|
|
- {
|
|
|
- codename: 'km50l.cluster',
|
|
|
- name: 'k-means (50 random sets, Lloyd method)',
|
|
|
- type: 'non-hierarchical',
|
|
|
- },
|
|
|
- {
|
|
|
- codename: 'km50m.cluster',
|
|
|
- name: 'k-means (50 random sets, MacQueen method)',
|
|
|
- type: 'non-hierarchical',
|
|
|
- },
|
|
|
- {
|
|
|
- codename: 'kme_eu.cluster',
|
|
|
- name: 'partitioning (Euclidean distance matrix)',
|
|
|
- type: 'non-hierarchical',
|
|
|
- },
|
|
|
- {
|
|
|
- codename: 'kme_mn.cluster',
|
|
|
- name: 'partitioning (Manhattan distance matrix)',
|
|
|
- type: 'non-hierarchical',
|
|
|
- },
|
|
|
- {
|
|
|
- codename: 'haclust',
|
|
|
- name: 'complete linkage (Euclidean distance matrix)',
|
|
|
- type: 'hierarchical',
|
|
|
- },
|
|
|
- {
|
|
|
- codename: 'haclustmin',
|
|
|
- name: 'complete linkage (Minkowski distance matrix)',
|
|
|
- type: 'hierarchical',
|
|
|
- },
|
|
|
- {
|
|
|
- codename: 'haclustbin',
|
|
|
- name: 'complete linkage (asymmetric binary distance matrix)',
|
|
|
- type: 'hierarchical',
|
|
|
- },
|
|
|
- {
|
|
|
- codename: 'haclustman',
|
|
|
- name: 'complete linkage (Manhattan distance matrix)',
|
|
|
- type: 'hierarchical',
|
|
|
- },
|
|
|
- {
|
|
|
- codename: 'haclustmax',
|
|
|
- name: 'complete linkage ("Supremum norm" distance matrix)',
|
|
|
- type: 'hierarchical',
|
|
|
- },
|
|
|
- {
|
|
|
- codename: 'haclustcan',
|
|
|
- name: 'complete linkage (Canberra distance matrix)',
|
|
|
- type: 'hierarchical',
|
|
|
- },
|
|
|
- /*{
|
|
|
- codename: 'haclustcom',
|
|
|
- name: 'complete linkage (Euclidean distance matrix)',
|
|
|
- type: 'hierarchical',
|
|
|
- },*/
|
|
|
- {codename: 'haclustwd2', name: 'Ward2', type: 'hierarchical'},
|
|
|
- {codename: 'haclustsin', name: 'single linkage', type: 'hierarchical'},
|
|
|
- {codename: 'haclustcen', name: 'centroid (UPGMC)', type: 'hierarchical'},
|
|
|
- {codename: 'haclustmed', name: 'median (WPGMC)', type: 'hierarchical'},
|
|
|
- {codename: 'haclustmcq', name: 'McQuitty (WPGMA)', type: 'hierarchical'},
|
|
|
- {
|
|
|
- codename: 'hdclust',
|
|
|
- name: 'DIANA (DIvisive ANAlysis)',
|
|
|
- type: 'hierarchical',
|
|
|
- },
|
|
|
- ];
|
|
|
+ methods: Array<{
|
|
|
+ codename: string;
|
|
|
+ name: string;
|
|
|
+ type: string;
|
|
|
+ }>;
|
|
|
private _clusteringInProcess: boolean;
|
|
|
|
|
|
constructor(
|
|
|
@@ -106,6 +35,7 @@ export class AdjusterService {
|
|
|
window.location.hostname === 'localhost'
|
|
|
? 'https://jmacura.ml/ws/' // 'http://localhost:3000/'
|
|
|
: 'https://publish.lesprojekt.cz/nodejs/';
|
|
|
+ this.methods = clusteringMethods;
|
|
|
this.method = 'haclustwd2';
|
|
|
}
|
|
|
|