sensob.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581
  1. #include <stdio.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <time.h>
  5. #include <syslog.h>
  6. #include <stdint.h>
  7. #include <math.h>
  8. #include <confuse.h>
  9. #include "libfixmath/libfixmath/fixmath.h"
  10. //#include "../../status.h"
  11. #include "../../../feeder.h"
  12. #include "sensob.h"
  13. typedef struct sensob_item_t
  14. {
  15. uint8_t flag;
  16. uint32_t sensor;
  17. uint32_t timestamp;
  18. uint8_t type;
  19. } __attribute__((packed)) sensob_item_t;
  20. typedef struct sensob_header_t
  21. {
  22. uint8_t delimiter;
  23. uint64_t id;
  24. uint16_t seq;
  25. uint16_t size;
  26. } __attribute__((packed)) sensob_header_t;
  27. typedef struct sensob_footer_t
  28. {
  29. uint16_t crc;
  30. } __attribute__((packed)) sensob_footer_t;
  31. typedef struct sensob_ack_t
  32. {
  33. uint8_t delimiter;
  34. uint16_t seq;
  35. } __attribute__((packed)) sensob_ack_t;
  36. typedef struct sensoblite_t
  37. {
  38. union
  39. {
  40. uint32_t raw;
  41. // struct sensoblite_timespec_t timespec;
  42. } timespec;
  43. } __attribute__((packed)) sensoblite_t;
  44. typedef struct sensobliteitem_t
  45. {
  46. uint32_t sensor_id;
  47. uint32_t value;
  48. } __attribute__((packed)) sensobliteitem_t;
  49. typedef struct sensoblite_ack_t
  50. {
  51. uint32_t timestamp;
  52. uint32_t dummy;
  53. } __attribute__((packed)) sensoblite_ack_t;
  54. typedef struct sensobtinymessage_t
  55. {
  56. uint8_t sensor_id_meta;
  57. uint16_t tm_diff;
  58. } __attribute__((packed)) sensobtinymessage_t;
  59. typedef struct sensob_item_position_data_t
  60. {
  61. double lat;
  62. double lon;
  63. double alt;
  64. } __attribute__((packed)) sensob_item_position_data_t;
  65. uint8_t sensob_types_len[] =
  66. {
  67. sizeof(uint8_t),
  68. sizeof(int8_t),
  69. sizeof(uint16_t),
  70. sizeof(int16_t),
  71. sizeof(uint32_t),
  72. sizeof(int32_t),
  73. sizeof(uint64_t),
  74. sizeof(int64_t),
  75. sizeof(float),
  76. sizeof(double),
  77. sizeof(time_t),
  78. sizeof(uint8_t),
  79. sizeof(sensob_item_position_data_t),
  80. sizeof(uint32_t),
  81. sizeof(fix16_t)
  82. };
  83. // todo: oifovat podle endianes
  84. uint16_t byteSwap16(uint16_t value)
  85. {
  86. uint16_t swapped;
  87. swapped = (((0x00FF) & (value >> 8)) |
  88. ((0xFF00) & (value << 8)));
  89. return swapped;
  90. }
  91. uint32_t byteSwap32(uint32_t value)
  92. {
  93. uint32_t swapped;
  94. swapped = (((0x000000FF) & (value >> 24)) |
  95. ((0x0000FF00) & (value >> 8)) |
  96. ((0x00FF0000) & (value << 8)) |
  97. ((0xFF000000) & (value << 24)));
  98. return swapped;
  99. }
  100. uint64_t byteSwap64(uint64_t value)
  101. {
  102. uint64_t swapped;
  103. swapped = (((0x00000000000000FFULL) & (value >> 56)) |
  104. ((0x000000000000FF00ULL) & (value >> 40)) |
  105. ((0x0000000000FF0000ULL) & (value >> 24)) |
  106. ((0x00000000FF000000ULL) & (value >> 8)) |
  107. ((0x000000FF00000000ULL) & (value << 8)) |
  108. ((0x0000FF0000000000ULL) & (value << 24)) |
  109. ((0x00FF000000000000ULL) & (value << 40)) |
  110. ((0xFF00000000000000ULL) & (value << 56)));
  111. return swapped;
  112. }
  113. //todo: kontrolvat jestli to jde - tj len=2,4,8,16 ...
  114. void memSwap(uint8_t * data, uint8_t len)
  115. {
  116. uint8_t temp;
  117. uint8_t i;
  118. for (i = 0; i < len / 2; i++)
  119. {
  120. temp = data[i];
  121. data[i] = data[len - 1 - i];
  122. data[len - 1 - i] = temp;
  123. }
  124. }
  125. #define SENSOB_TYPE_UINT8 0
  126. #define SENSOB_TYPE_INT8 1
  127. #define SENSOB_TYPE_UINT16 2
  128. #define SENSOB_TYPE_INT16 3
  129. #define SENSOB_TYPE_UINT32 4
  130. #define SENSOB_TYPE_INT32 5
  131. #define SENSOB_TYPE_UINT64 6
  132. #define SENSOB_TYPE_INT64 7
  133. #define SENSOB_TYPE_FLOAT 8
  134. #define SENSOB_TYPE_DOUBLE 9
  135. #define SENSOB_TYPE_TIMESTAMP 10
  136. #define SENSOB_TYPE_ERROR 11
  137. #define SENSOB_TYPE_POSITION 12
  138. #define SENSOB_TYPE_ALERT 13
  139. #define SENSOB_TYPE_FIX16 14
  140. static uint8_t * ld = NULL;
  141. static uint8_t * pd = NULL;
  142. static uint16_t sd = 0;
  143. static uint16_t seq = 0;
  144. uint8_t * findDelimiter(uint8_t * data, uint16_t len)
  145. {
  146. uint8_t * res;
  147. for (res = data; res < data + len; res++)
  148. {
  149. if (*res == 0xff)
  150. return res;
  151. }
  152. return NULL;
  153. }
  154. #define SENSOBLITE_MASK_FIX16 0x00000000
  155. #define SENSOBLITE_MASK_FLOAT 0x40000000
  156. #define SENSOBLITE_MASK_INT32 0x80000000
  157. #define SENSOBLITE_MASK_RES 0xC0000000
  158. int
  159. sensoblite_parse(uint8_t * data,
  160. uint16_t length, time_t * tm,
  161. double *result_array, uint64_t * sensors, unsigned int *type)
  162. {
  163. struct sensoblite_t * sensoblite = (struct sensoblite_t *)data;
  164. struct sensobliteitem_t * sensobliteitem;
  165. uint32_t val_swapped;
  166. float val_float;
  167. uint8_t i;
  168. int l;
  169. *tm = byteSwap32(sensoblite->timespec.raw);
  170. l = (length - sizeof(struct sensoblite_t)) / sizeof(struct sensobliteitem_t);
  171. feederLog(LOG_DEBUG, "sensoblite: Analyzing data, size %d %d\n", l, length);
  172. i = 0;
  173. while (i < l)
  174. {
  175. sensobliteitem = (struct sensobliteitem_t *)(data + sizeof(struct sensoblite_t) + (i * sizeof(struct sensobliteitem_t)));
  176. sensors[i] = byteSwap32(sensobliteitem->sensor_id);
  177. if ((sensors[i] & 0xC0000000) == SENSOBLITE_MASK_FIX16)
  178. {
  179. if (((fix16_t)(byteSwap32((uint32_t)(sensobliteitem->value)))) == fix16_overflow)
  180. result_array[i] = NAN;
  181. else
  182. result_array[i] = fix16_to_dbl((fix16_t)(byteSwap32((uint32_t)(sensobliteitem->value))));
  183. }
  184. if ((sensors[i] & 0xC0000000) == SENSOBLITE_MASK_FLOAT)
  185. {
  186. val_swapped = byteSwap32((uint32_t)(sensobliteitem->value));
  187. //result_array[0] = byteSwap32((uint32_t)(sensobliteitem->value));
  188. memcpy(&val_float, &val_swapped, 4);
  189. result_array[i] = val_float;
  190. }
  191. if ((sensors[i] & 0xC0000000) == SENSOBLITE_MASK_INT32)
  192. {
  193. result_array[i] = (float)(byteSwap32((uint32_t)(sensobliteitem->value)));
  194. }
  195. sensors[i] &= 0xBFFFFFFF;
  196. i++;
  197. }
  198. *type = VALUES_TYPE_OBS;
  199. return l;
  200. }
  201. typedef struct meta_u_t
  202. {
  203. uint64_t id;
  204. double multi;
  205. } meta_u_t;
  206. typedef struct sensobtinymeta_t
  207. {
  208. struct meta_u_t u[32];
  209. } sensobtinymeta_t;
  210. /*
  211. static struct sensobtinymeta_t metas[24] =//todo: konfigurovat toto a casovou zonu devicy v conf, nebo to bude posilat noda
  212. {
  213. {{{100000000,1.0}}}, //0
  214. {{{340340092,1.0},{340350004,1.0},{360200000,1.0}}}, //1
  215. {{{360200000,1.0}}}, //2
  216. {{{340070001,1.0},{410050001,1.0},{460010001,1.0}}}, //3
  217. {{{480020001,1.0},{490010001,1.0}}}, //4
  218. {{{470020001,1.0},{470010001,1.0}}}, //5
  219. {{{540090004,10.0},{550020004,10.0},{340370004,10.0}}}, //6
  220. {{{620030000,1.0},{480080000,1.0},{820010000,1.0},{830010000,1.0},{470160000,1.0},{470180000,1.0},{470170000,1.0},{340420000,1.0},{460080000,1.0},{460090000,1.0},{410180000,1.0},{840010000,1.0},{840020000,1.0}}}, //7
  221. {{{710010000,1.0},{340260000,1.0}}}, //8
  222. {{{620030000,1.0},{480080000,1.0},{470160000,1.0},{470180000,1.0},{340420000,1.0},{460090000,1.0},{410180000,1.0}}}, //9
  223. {{{820010000,1.0},{830010000,1.0},{470170000,1.0},{460080000,1.0},{840010000,1.0},{840020000,1.0}}}, //10
  224. {{{690020001,1.0},{340230001,1.0},{700020001,1.0}}}, //11
  225. {{{0,0.0}}}
  226. };
  227. */
  228. static struct sensobtinymeta_t metas[24];//todo: konfigurovat toto a casovou zonu devicy v conf, nebo to bude posilat noda
  229. #define SENSOB_TINY_DATA_SIZE 3
  230. int
  231. sensobtiny_parse(uint8_t * data,
  232. uint16_t length,
  233. uint32_t time_of_receive,
  234. time_t * tm,
  235. double *result_array, uint64_t * sensors, unsigned int *type)
  236. {
  237. uint8_t meta_id;
  238. uint16_t i, j;
  239. fix16_t val;
  240. struct sensobtinymessage_t * sensobtinymessage = (struct sensobtinymessage_t *)data;
  241. struct tm t;
  242. static cfg_t * cfg = NULL;
  243. cfg_t * cfg_tiny, * cfg_item;
  244. (void)length;
  245. cfg_opt_t cfg_items[] =
  246. {
  247. CFG_INT((char *)"id", 0, CFGF_NONE),
  248. CFG_FLOAT((char *)"multi", 0, CFGF_NONE),
  249. CFG_END()
  250. };
  251. cfg_opt_t cfg_tinys[] =
  252. {
  253. CFG_INT((char *)"no", 0, CFGF_NONE),
  254. CFG_SEC((char *)"item:", cfg_items, CFGF_MULTI),
  255. CFG_END()
  256. };
  257. cfg_opt_t cfg_opts[] =
  258. {
  259. CFG_SEC((char *)"tiny:", cfg_tinys, CFGF_MULTI),
  260. CFG_END()
  261. };
  262. if (cfg == NULL)
  263. {
  264. cfg = cfg_init(cfg_opts, CFGF_NONE);
  265. if (cfg_parse(cfg, "sensob.conf") != CFG_SUCCESS)
  266. {
  267. feederLog(LOG_WARNING, "sensobtiny: Can not read sensob.conf file\n");
  268. cfg = NULL;
  269. }
  270. else
  271. {
  272. for (i = 0; i < 24; i++)
  273. metas[i].u[0].id = 0;
  274. for (i = 0; i < cfg_size(cfg, "tiny:"); i++)
  275. {
  276. cfg_tiny = cfg_getnsec(cfg, "tiny:", i);
  277. // meta_id = atoi(cfg_title(cfg_tiny));
  278. meta_id = cfg_getint(cfg_tiny, "no");
  279. for (j = 0; j < cfg_size(cfg_tiny, "item:"); j++)
  280. {
  281. cfg_item = cfg_getnsec(cfg_tiny, "item:", j);
  282. metas[meta_id].u[j].id = cfg_getint(cfg_item, "id");
  283. metas[meta_id].u[j].multi = cfg_getfloat(cfg_item, "multi");
  284. }
  285. }
  286. }
  287. }
  288. feederLog(LOG_DEBUG, "sensobtiny: Analyzing data, size %d\n", length);
  289. meta_id = sensobtinymessage->sensor_id_meta - 0xA0;
  290. /*
  291. localtime_r((time_t *)&time_of_receive, &t);
  292. time_of_receive = mktime(&t);
  293. */
  294. *tm = (time_of_receive / 60) * 60 - (byteSwap16(sensobtinymessage->tm_diff) * 60);
  295. localtime_r((time_t *)tm, &t);//todo: z konfigurace
  296. *tm = timegm(&t);
  297. length -= sizeof(struct sensobtinymessage_t);
  298. data += sizeof(struct sensobtinymessage_t);
  299. feederLog(LOG_DEBUG, "sensobtiny: time of receive %lld, diff %lld, timestamp %lld\n", time_of_receive, byteSwap16(sensobtinymessage->tm_diff), *tm);
  300. feederLog(LOG_DEBUG, "sensobtiny: meta id %lld, diff %lld, timestamp %lld\n", meta_id);
  301. i = 0;
  302. if (metas[meta_id].u[0].id != 0)
  303. {
  304. while (length > 0)
  305. {
  306. feederLog(LOG_DEBUG, "sensobtiny: field %d\n", i);
  307. sensors[i] = metas[meta_id].u[i].id;
  308. val = 0;
  309. memSwap(data, SENSOB_TINY_DATA_SIZE);
  310. memcpy(((uint8_t *)&val) + 1, data, SENSOB_TINY_DATA_SIZE);
  311. feederLog(LOG_DEBUG, "sensobtiny: field val 0x%LX\n", (uint32_t)val);
  312. data += SENSOB_TINY_DATA_SIZE;
  313. if (val == fix16_overflow)
  314. {
  315. result_array[i] = NAN;
  316. }
  317. else
  318. // val = fix16_div(val, fix16_from_dbl(metas[meta_id].u[i].multi));//todo:
  319. {
  320. result_array[i] = round(fix16_to_dbl(val) * 100.0) / 100.0;
  321. result_array[i] /= metas[meta_id].u[i].multi;
  322. }
  323. i++;
  324. length -= SENSOB_TINY_DATA_SIZE;
  325. }
  326. }
  327. else
  328. feederLog(LOG_DEBUG, "sensobtiny: Unknowen meta id %d\n", meta_id);
  329. *type = VALUES_TYPE_OBS;
  330. /*
  331. *tm = byteSwap32(sensoblite->timespec.raw);
  332. sensors[0] = byteSwap32(sensoblite->sensor_id);
  333. result_array[0] = fix16_to_dbl((fix16_t)(byteSwap32((uint32_t)(sensoblite->value))));
  334. *type = VALUES_TYPE_OBS;
  335. */
  336. return i;
  337. }
  338. int
  339. sensob_parse(uint8_t * data,
  340. uint16_t length, uint64_t * id, time_t * tm,
  341. double *result_array, uint64_t * sensors, unsigned int *type)
  342. {
  343. static struct sensob_header_t * header;
  344. struct sensob_item_t * item;
  345. struct sensob_footer_t * footer;
  346. double val;
  347. unsigned int ret, i;
  348. static double lat, lon; //todo: do lib_data
  349. static uint8_t pos_flag = 0;
  350. uint8_t temp[256];
  351. time_t tm_prev;
  352. feederLog(LOG_DEBUG, "sensob: Analyzing data, size %d\n", length);
  353. ret = 0;
  354. if ((data != NULL) && (length > 0))
  355. {
  356. if (ld != NULL)
  357. {
  358. free(ld);
  359. ld = pd = NULL;
  360. sd = 0;
  361. }
  362. ld = malloc(length);
  363. if (ld == NULL)
  364. {
  365. feederLog(LOG_WARNING, "sensob: Can not allocate data buffer\n");
  366. return -1;
  367. }
  368. memcpy(ld, data, length);
  369. pd = NULL;
  370. sd = length;
  371. pd = findDelimiter(ld, sd);
  372. if (pd == NULL)
  373. {
  374. feederLog(LOG_WARNING, "sensob: No delimiter\n");
  375. free(ld);
  376. ld = NULL;
  377. return -1;
  378. }
  379. header = (sensob_header_t *)pd;
  380. feederLog(LOG_DEBUG, "sensob: Id %llu, seq %d, size %d\n", header->id, header->seq, header->size);
  381. if (header->size > 100)
  382. {
  383. feederLog(LOG_WARNING, "sensob: maximum item size of packet overstepped\n");
  384. free(ld);
  385. ld = NULL;
  386. return -1;
  387. }
  388. seq = header->seq;
  389. pd += sizeof(struct sensob_header_t);
  390. }
  391. if (pd == NULL)
  392. {
  393. return 0;
  394. }
  395. // *id = byteSwap64(header->id);
  396. *id = header->id;
  397. i = 0;
  398. tm_prev = 0;
  399. feederLog(LOG_DEBUG, "sensob: header size %d\n", header->size);
  400. if (header->size > 0)
  401. {
  402. item = (sensob_item_t *)pd;
  403. pd += sizeof(struct sensob_item_t);
  404. val = 0.0;
  405. memcpy(temp, pd, sensob_types_len[item->type]);
  406. // memSwap(temp, sensob_types_len[item->type]);
  407. switch (item->type)
  408. {
  409. case SENSOB_TYPE_UINT8:
  410. val = (uint8_t)*pd;
  411. break;
  412. case SENSOB_TYPE_FLOAT:
  413. // val = byteSwap32(*((float *)pd));
  414. val = *((float *)temp);
  415. break;
  416. case SENSOB_TYPE_DOUBLE:
  417. // val = byteSwap64(*((double *)pd));
  418. val = *((double *)temp);
  419. break;
  420. case SENSOB_TYPE_ERROR:
  421. val = (uint8_t)*pd;
  422. break;
  423. case SENSOB_TYPE_ALERT:
  424. val = (uint32_t)*pd;
  425. break;
  426. case SENSOB_TYPE_POSITION:
  427. break;
  428. case SENSOB_TYPE_FIX16:
  429. val = fix16_to_dbl(*((fix16_t *)temp));
  430. break;
  431. }
  432. pd += sensob_types_len[item->type];
  433. feederLog(LOG_DEBUG, "sensob: item sensor %lu, value %f, type %d\n", item->sensor, val, item->type);
  434. header->size--;
  435. if (item->type == SENSOB_TYPE_POSITION)
  436. {
  437. lat = val;
  438. lon = val;
  439. pos_flag = 0;
  440. *tm = item->timestamp; //todo: ted bere posledni cas, musime predelat na casy jednotlivych mereni
  441. *type = VALUES_TYPE_POS;
  442. result_array[0] = ((sensob_item_position_data_t *) temp)->lat;
  443. result_array[1] = ((sensob_item_position_data_t *) temp)->lon;
  444. result_array[2] = 0.0;
  445. result_array[3] = 1.0;
  446. result_array[4] = 0.0;
  447. sensors[0] = sensors[1] = sensors[2] = sensors[3] = sensors[4] = 0x10;
  448. ret = 5;
  449. }
  450. else
  451. {
  452. /* if ((item->sensor != 4294967295) && (item->timestamp != 4294967295) && (!isnan(val))) //BEWARE: tohle je kontrola proti lugioho meteoskam - obcas poslou FFFFFFF -> kontrola tamniho posilani*/
  453. // if ((!isnan(val))) //todo: poustime i nan jako oznaceni nevalidniho mereni
  454. {
  455. sensors[i] = item->sensor;
  456. result_array[i] = val;
  457. i++;
  458. *tm = item->timestamp;
  459. feederLog(LOG_DEBUG, "sensob: Timestamp %lu\n", item->timestamp);
  460. if ((item->type == SENSOB_TYPE_ERROR) || (item->type == SENSOB_TYPE_ALERT))
  461. *type = VALUES_TYPE_ALERT;
  462. else
  463. *type = VALUES_TYPE_OBS;
  464. ret = i;
  465. }
  466. }
  467. }
  468. if (header->size == 0)
  469. {
  470. free(ld);
  471. ld = pd = NULL;
  472. sd = 0;
  473. }
  474. return ret;
  475. }
  476. int sensob_reply(uint8_t * data)
  477. {
  478. struct sensob_ack_t * ack;
  479. if (seq == 0)
  480. return 0;
  481. ack = (struct sensob_ack_t *)data;
  482. ack->delimiter = 0xff;
  483. ack->seq = seq;
  484. seq = 0;
  485. // feederLog(LOG_DEBUG, "sensob: replying\n");
  486. return sizeof(struct sensob_ack_t);
  487. }